Our study reveals that the maxilla of Oryctes rhinoceros bears a complex array of morphologically
and functionally distinct sensilla, including trichoid sensilla, sensilla chaetica, basiconic sensilla,
coeloconic sensilla, placoid sensilla, and Böhm sensilla, in addition to a small number of singly
distributed cuticular pores and hairs. All these structures are associated with feeding and are
specialized for detecting various physical and chemical stimuli. Among the mouthparts, the
maxillae are regarded as the most important sensory structures; nevertheless, they are not the only
ones that bear sensilla. A comprehensive investigation of feeding-related sensilla should therefore
include other mouthparts and associated structures such as the labrum and labium, and antennae.
Conclusion
The present study reveals that the mouthparts of Oryctes rhinoceros larvae are structurally adapted
for consuming solid food. The maxillae play a crucial role in feeding, facilitating food selection
and rejection, processes that are aided by the diverse sensilla distributed on them. This adaptation
is particularly important since the larvae are non-selective feeders and rely entirely on the feeding
medium itself for their development and metamorphosis.
References
1. Chapman RF. The insects: Structure and function. 4th ed. Cambridge: Cambridge University Press;1998.
2. Bedford GO. Biology, ecology, and control of palm rhinoceros beetles. Annu Rev Entomol 1980; 25(1): 309–
39.
3. Prabhu VKK and Sreekumar S. Endocrine regulation of feeding and digestion in insects. In: Agrawal OP, editor.
Perspectives in entomological research. Jodhpur: Scientific Publishers, 1994.pp117-35.
4. Zacharuk RY. Antennae and sensilla. In: Kerkut GA, Gilbert LI. Editors. Comprehensive insect physiology,
biochemistry and pharmacology (Vol. 6). Oxford:Pergamon Press;1985. pp. 1–69.
5. Rekha K, Sreekumar S. Morphology of the integumentary structures in the nymph of lace bug, Stephanitis typica
(Hemiptera: Tingidae). J Electron Microsc 2004;53(1):57-61.
6. Miller A. The mouth parts and digestive tract of adult dung beetles (Coleoptera: Scarabaeidae), with reference
to the ingestion of helminth eggs. J Parasitol 1961; 47(5):735-44.
7. Koçakoğlu NÖ, Candan S, Erbey M. Structure of the mouthparts and alimentary canal of Eusomus ovulum
Germar, 1824 (Coleoptera: Curculionidae). Rev Bras Entomol 2020; 64: e20200004.
8. Kumar GS, Ravishankar V. The Evolution of the Mouthparts of Insects. Int J Health Sci (Qassim) 2021; 5(S2):
1153-9.
9. Shields VDC. Ultrastructure of insect sensilla. In: Capinera JL, editor. Encyclopedia of Entomology.
Dordrecht(Netherlands): Springer:2008. pp.2408-20.
10. Merivee E, Ploomi A, Luik A, Rahi M, Sammelselg V. Antennal sensilla of the ground beetle Platynus dorsalis
(Pontoppidan, 1763) (Coleoptera, Carabidae). Microsc Res Tech 2001; 55(5):339-49.
11. Merivee E, Ploomi A, Rahi M, Bresciani J, Ravn HP, Luik A, et al. Antennal sensilla of the ground beetle
Bembidion properans Steph. (Coleoptera, Scarabidae). Micron 2002; 33(5):429-40.
12. Keil TA, Steinbrecht RA. Mechanosensitive and olfactory sensilla of insects. In: King RC, Akai A, editors. Insect
Ultrastructure (Vol. 2) MA: Massachusetts: Springer;1984. pp.477-516.
13. Moore BP, Wallbank BE. Chemical composition of the defensive secretion in carabid beetles. Proceedings of
the Royal Entomological Society of London. Series B. Taxonomy 1968; 37(5–6): 57–88.
14. Giglio A, Ferrero E A, Perrotta E, Tripepi S, Brandmayr TZ. Ultrastructure and comparative morphology of
mouth-part sensilla in ground beetle larvae (Insecta, Coleoptera, Carabidae). Zoologischer Anzeiger-A. Journal
of Comparative Zoology 2003; 242(3):277-92.
15. Nowińsk A, Brożek J. Morphological study of the antennal sensilla in Gerromorpha (Insecta: Hemiptera:
Heteroptera). Zoomorphology 2017;136(3):327-47.
16. Haddad S, Clarke DJ, Jeong SH, Mitchell RF, McKenna DD. Antennal sensilla in longhorn beetles (Coleoptera:
Cerambycidae). Ann Entomol Soc Am 2023; 116(2):83-113.
17. Dyer LJ, Seabrook WD. Sensilla on the antennal flagellum of the sawyer beetles Monochamus notatus (Drury)
and Monochamus scutellatus (Say) (Coleoptera: Cerambycidae). J Morphol 1975;146(4):513–31.
18. Altner H, Prillinger L. Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional
significance. Int Rev Cytol 1980; 67:69–139.
19. Mitchell BK, Itagaki H, Rivet MP. Peripheral and central structures involved in insect gustation. Microsc Res
Tech 1999;47(6):401–15.
20. Steinbrecht RA. Pore structures in insect olfactory sensilla: A review of data and concepts. Int J Insect Morphol
Embryol 1998;27(3):229–45.
21. Veena O, Susha D, Sreekumar S. Effects of frontal ganglionectomy on feeding and maxillar morphology of the
final instar larvae of Oryctes rhinoceros (Coleoptera: Scarabaeideae). Entomon 2011;36(1- 4):231–35.
22. Kuwabara M, Takeda K. On the hygroreceptor of the honey bee Apis mellifera. Physiol Ecol 1956; (7):1–6.
23. Rebora M, Piersanti S, Almaas TJ, Gaino E. Hygroreceptors in the larva of Libellula depressa. J Insect Physiol
2007;53(6):550–8.