10. Nelson TS, Ferrara LW, Storer NL. Phytate phosphorus content of feed ingredients derived from plants. Poul
Sci 1968;47(4):1372-4.
11. Rebello S, Jose L, Sindhu R, Aneesh EM. Molecular advancements in the development of thermostable
phytases. Appl Microbiol Biotechnol 2017;101(7):2677-89.
12. Greiner R, Konietzny U. Improving enzymatic reduction of myo‐inositol phosphates with inhibitory effects
on mineral absorption in black beans (Phaseolus vulgaris var. preto). J Food Process Preserv 1999;23(3):249-
61.
13. Azeke MA, Egielewa SJ, Eigbogbo MU, Ihimire IG. Effect of germination on the phytase activity, phytate
and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum
(Sorghum bicolor) and wheat (Triticum aestivum). J Food Sci Technol 2011;48(6):724-9.
14. Elhardallou SB, Walker AF. Phytic acid content of three legumes in the raw, cooked and fibre forms.
Phytochem Anal 1994;5(5):243-6.
15. Rizwanuddin S, Kumar V, Naik B, Singh P, Mishra S, Rustagi S, et al. Microbial phytase: Their sources,
production, and role in the enhancement of nutritional aspects of food and feed additives. J Agric Food Res
2023;12:100559.
16. Singh B, Kunze G, Satyanarayana T. Developments in biochemical aspects and biotechnological applications
of microbial phytases. Biotechnol Mol Biol Rev 2011;6(3):69-87.
17. Matange N, Podobnik M, Visweswariah SS. Metallophosphoesterases: structural fidelity with functional
promiscuity. Biochem J 2015;467(2):201-16.
18. Oh BC, Kim MH, Yun BS, Choi WC, Park SC, Bae SC, et al. Ca2+-inositol phosphate chelation mediates the
substrate specificity of β-propeller phytase. Biochem 2006;45(31):9531-9.
19. Lei XG, Porres JM, Mullaney EJ, Brinch-Pedersen H. Phytase: source, structure and application. In: Polaina
J, MacCabeAP, editors. Industrial enzymes: Structure, function and applications. Dordrecht: Springer
Netherlands;1995pp. 505-529.
20. Greiner R, Alminger ML, Carlsson NG. Stereospecificity of myo-inositol hexakisphosphate
dephosphorylation by a phytate-degrading enzyme of baker's yeast. J Agric Food Chem 2001;49(5):2228-33.
21. Dersjant‐Li Y, Awati A, Schulze H, Partridge G. Phytase in non‐ruminant animal nutrition: a critical review
on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agric 2015;95(5):878-
96.
22. Bandari NM, Abootaleb M, Nikokar I, Karimli M. Biologically engineered probiotic supplement production
containing phytase enzyme for livestock, poultry, and aquaculture consumption. J Basic Appl Zool
2024;85(1):41.
23. Kim M, Ingale SL, Hosseindoust A, Choi Y, Kim K, Chae B. Synergistic effect of exogenous multi-enzyme
and phytase on growth performance, nutrients digestibility, blood metabolites, intestinal microflora and
morphology in broilers fed corn-wheat-soybean meal diets. Anim Biosci 2021;34(8):1365.
24. Singh M, Krikorian AD. Inhibition of trypsin activity in vitro by phytate. J Agric Food Chem 1982;30(4):799-
800.
25. Deshpande SS, Cheryan M. Effects of phytic acid, divalent cations, and their interactions on α‐amylase
activity. J Food Sci 1984;49(2):516-9.
26. Egli I, Davidsson L, Juillerat MA, Barclay D, Hurrell RF. The influence of soaking and germination on the
phytase activity and phytic acid content of grains and seeds potentially useful for complementary feeding. J
Food Sci 2002;67(9):3484-8.
27. Adeshakin OE, Koo B, Patterson R, Nyachoti M. Effects of phytase with or without multi-carbohydrase
supplementation on growth performance, nutrient digestibility, and bone traits in nursery pigs. J Anim Sci
2021;99(Suppl 3):207–8.
28. Leyva-Jimenez H, Alsadwi AM, Gardner K, Voltura E, Bailey CA. Evaluation of high dietary phytase
supplementation on performance, bone mineralization, and apparent ileal digestible energy of growing
broilers. Poult Sci 2019;98(2):811-9.
29. Dang DX, Chun SG, Kim IH. Feeding broiler chicks with Schizosaccharomyces pombe-expressed phytase-
containing diet improves growth performance, phosphorus digestibility, toe ash, and footpad lesions. Anim
Biosci 2022;35(9):1390.
30. Madrid J, Martínez S, López C, Hernández F. Effect of phytase on nutrient digestibility, mineral utilization
and performance in growing pigs. Livest Sci 2013;154(1-3):144-51.
31. Babatunde OO, Adeola O. A time-series effect of phytase supplementation on phosphorus utilization in
growing and finishing pigs fed a low-phosphorus diet. J Anim Sci 2022;100(1):skab350.
32. Roopesh K, Ramachandran S, Nampoothiri KM, Szakacs G, Pandey A. Comparison of phytase production
on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresour Technol
2006;97(3):506-11.
33. Ramachandran S, Roopesh K, Nampoothiri KM, Szakacs G, Pandey A. Mixed substrate fermentation for the
production of phytase by Rhizopus spp. using oilcakes as substrates. Process Biochem 2005;40(5):1749-54.
34. Ningthoujam J, Syiem MB, Syiem D. Biochemical Characterization of a Novel Cysteine Protease Purified
from the Medicinal Plant Kaempferia galanga L. Protein J 2025;44(2):213-30.
35. Coutinho TC, Tardioli PW, Farinas CS. Phytase immobilization on hydroxyapatite nanoparticles improves its
properties for use in animal feed. Applied Biochem Biotechnol 2020;190(1):270-92.
36. Khongkomolsakul W, Buathong P, Yang E, Dadmohammadi Y, Zhou Y, Li P, et al. Improving Thermal and
Gastric Stability of Phytase via pH Shifting and Coacervation: A Demonstration of Bayesian Optimization
for Rapid Process Tuning. bioRxiv 2025.04.18.649602.
37. Venkataraman S, Raj KM, Vivek S, Johnson B, Vaidyanathan VK. Enhanced Nutritional Efficiency in Poultry
Feed: Optimized Production and Immobilization of Thermostable Phytase from Mucor indicus Using
Agricultural By-Products. Applied Biochem Biotechnol 2025;197:4351-67.