12. UNSCEAR. Effects of ionizing radiation on non-human biota. Report to the General Assembly with
Scientific Annexes, Volume II. Scientific Annex E. 2008.
https://www.unscear.org/unscear/en/publications/2008_2.html [Last assessed on 2023 April 12).
13. Galvan I, Bonisoli-Alquati A, Jenkinson S, Ghanem G, Wakamatsu K, Mousseau T, et al. Chronic
exposure to low-dose radiation at Chernobyl favours adaptation to oxidative stress in birds. Funct Ecol.
2014; 28:1387-403. doi:10.1111/1365-2435.12283.
14. Volkova PYu, Geras’kin SA, Kazakova EA. Radiation exposure in the remote period after the Chernobyl
accident caused oxidative stress and genetic effects in Scots pine populations. Sci Rep. 2017; 7:43009.
doi:10.1038/srep43009.
15. Boubriak I, Akimkina T, Polischuk V, Dmitriev A, McCready S, Grodzinsky D. Long-term effects of
Chernobyl contamination on DNA repair function and plant resistance to different biotic and abiotic
stress factors. Cytol Genet. 2016;50(6):34-59. doi:10.3103/S0095452716060049.
16. Kovalchuk O, Burke P, Arkhipov A, Kuchma N, James SJ, Kovalchuk I, et al. Genome hypermethylation
in Pinus sylvestris of Chernobyl: a mechanism for radiation adaptation? Mutat Res. 2003; 529:13-20.
17. Kovalchuk I, Abramov V, Pogribny I, Kovalchuk O. Molecular aspects of plant adaptation to life in the
Chernobyl zone. Plant Physiol. 2004; 135:357-63. doi:10.1104/pp.104.040477.
18. Møller AP, Mousseau TA. Are organisms adapting to ionizing radiation at Chernobyl? Trends Ecol Evol.
2016;31(4):281-9.
19. Holst RW, Nagel DJ. Radiation effects on plants. In: Wang W, Gorsuch JW, Hughes JS, editors. Plants
for Environmental Studies. New York: CRC Press/Lewis Publishers; 1997. p. 37-79.
20. Jan S, Parween T, Siddiqi TO, Mahmooduzzafar. Effect of gamma radiation on morphological,
biochemical, and physiological aspects of plants and plant products. Environ Rev. 2012; 20:17-39.
21. Coughtrey PJ, Thorne MC. Radionucleotide distribution and transport in terrestrial and aquatic
ecosystems: a critical review of data. Vol I. Rotterdam: A.A. Balkema; 1983.
22. Papastefanou C, Manolopoulou M, Charalambous S. Radiation measurements and radioecological
aspects of fallout from Chernobyl. J Environ Radioactivity. 1988; 7:49-64.
23. Papastefanou C, Manolopoulou M, Sawidis T. Lichens and mosses: biological monitors of radioactive
fallout from the Chernobyl reactor accident. J Environ Radioactivity. 1989;9(3):199-207.
24. Groombridge B, Jenkins MD. World Atlas of Biodiversity. Berkeley: University of California Press;
2002.
25. Grosovsky AJ, Deboer JG, Dejong PG, Drobetsky EA, Glickman BW. Base substitutions, frame shifts,
and small deletions constitute ionizing radiation induced point mutations in mammalian cells. Proc Natl
Acad Sci U S A. 1988; 85:185-8. PMID: 3422416.
26. Ellegren H, Lindgren G, Primmer CR, Møller AP. Fitness loss and germline mutations in barn swallows
breeding in Chernobyl. Nature. 1997; 389:593-6.
27. Møller AP, Mousseau TA. Albinism and phenotype of barn swallows (Hirundo rustica) from Chernobyl.
Evolution. 2001; 55:2097-104.
28. Mousseau TA, Møller AP. Elevated frequency of cataracts in birds from Chernobyl. PLoS ONE. 2013;
8:66939.
29. Møller AP, Surai P, Mousseau TA. Antioxidants, radiation and mutations in barn swallows from
Chernobyl. Proc R Soc Lond B Biol Sci. 2004; 272:247-52.
30. Møller AP, Mousseau TA, Lynn C, Ostermiller S, Rudolfsen G. Impaired swimming behaviour and
morphology of sperm from barn swallows (Hirundo rustica) in Chernobyl. Mutat Res. 2008; 650:210-6.
31. Bonisoli-Alquati A, Møller AP, Rudolfsen G, Saino N, Caprioli M, Ostermiller S, et al. The effects of
radiation on sperm swimming behavior depend on plasma oxidative status in the barn swallow (Hirundo
rustica). Comp Biochem Physiol A Mol Integr Physiol. 2011; 159:105-12.