keeping them potent against malignant cells; yet safe for the patient’s normal tissues. Even
though T cells may be taking the ‘centre stage’ of immune-therapy, the NK cells are slowly
‘stepping out’ of the shadows. It is noteworthy that people with higher NK cell activity tend
to have a lower incidence of cancer, and patients whose tumours exhibit strong “NK cell
signatures” (indications of NK cell infiltration and gene activity) have the chance of enjoying
longer disease-free survival.[33] This is due to the fact that NK cells eliminate circulating
‘transformed’ or precancerous cells and prevent them from ‘seeding’ in new locations, thereby
lowering the incidence of cancer and the risk of relapse. NK cells hold great promise as the
next generation fighter/killer candidates of cancer immune-therapies, provided they are kept
metabolically active and protected from the deceits of the tumour microenvironment.
References
1. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol
2008;9(5):503-10.
2. Mariuzza RA, Singh P, Karade SS, Shahid S, Sharma VK. Recognition of self and viral ligands by NK cell
receptors. Immunol Rev 2025;329(1):e13435.
3. Cantoni C, Falco M, Vitale M, Pietra G, Munari E, Pende D, Mingari MC, Sivori S, Moretta L. Human NK
cells and cancer. Oncoimmunology 202;13(1):2378520.
4. Xu Y, Zhou R, Huang C, Zhang M, Li J, Zong J, et al. Analysis of the expression of surface receptors on
NK cells and NKG2D on immunocytes in peripheral blood of patients with nasopharyngeal carcinoma. Asian
Pac J of Cancer Prev 2018;19(3):661.
5. Andre P, Castriconi R, Espéli M, Anfossi N, Juarez T, Hue S, et al. Comparative analysis of human NK cell
activation induced by NKG2D and natural cytotoxicity receptors. Eur J Immunol 2004;34(4):961-71.
6. Demaria O, Gauthier L, Debroas G, Vivier E. Natural killer cell engagers in cancer immunotherapy: next
generation of immuno‐oncology treatments. Eur J Immunol 2021;51(8):1934-42.
7. Vyas M, Requesens M, Nguyen TH, Peigney D, Azin M, Demehri S. Natural killer cells suppress cancer
metastasis by eliminating circulating cancer cells. Front Immunol 2023; 13:1098445.
8. Liu X, Song J, Zhang H, Liu X, Zuo F, Zhao Y, et al. Immune checkpoint HLA-E: CD94-NKG2A mediates
evasion of circulating tumour cells from NK cell surveillance. Cancer Cell 2023; 41(2):272-87.
9. Tong L, Jiménez-Cortegana C, Tay AH, Wickström S, Galluzzi L, Lundqvist A. NK cells and solid tumours:
therapeutic potential and persisting obstacles. Mol Cancer 2022; 21(1):206.
10. Lian G, Mak TS, Yu X, Lan HY. Challenges and recent advances in NK cell-targeted immunotherapies in
solid tumours. Int J Mol Sci 2021; 23(1):164.
11. Dinavahi SS, Chen YC, Punnath K, Berg A, Herlyn M, Foroutan M, et al. Targeting WEE1/AKT Restores
p53-dependent natural killer–cell activation to induce immune checkpoint blockade responses in “cold”
melanoma. Cancer Immunol Res 2022;10(6):757-69.
12. Abdolahi S, Ghazvinian Z, Muhammadnejad S, Ahmadvand M, Aghdaei HA, Ebrahimi-Barough S, et al.
Adaptive NK cell therapy modulated by anti-PD-1 antibody in gastric cancer model. Front Pharmacol 2021;
12:733075.
13. Gillgrass AE, Chew MV, Krneta T, Ashkar AA. Overexpression of IL-15 promotes tumour destruction via
NK1.1+ cells in a spontaneous breast cancer model. BMC Cancer 2015;15: 293.
14. Dubois SP, Miljkovic MD, Fleisher TA, Pittaluga S, Hsu-Albert J, Bryant BR, et al. Short-course IL-15
given as a continuous infusion led to a massive expansion of effective NK cells: implications for combination
therapy with antitumour antibodies. J Immunother Cancer 2021; 9(4):e002193.
15. Ross SH, Cantrell DA. Signaling and function of interleukin-2 in T lymphocytes. Annu Rev Immunol 2018;
36(1):411-33.
16. Keener AB. Natural killer cells show their cancer-fighting worth. Nature 2024; 629(8014): S4-6.
17. Demaria O, Gauthier L, Vetizou M, Alvarez AB, Vagne C, Habif G, et al. Antitumour immunity induced by
antibody-based natural killer cell engager therapeutics armed with not-alpha IL-2 variant. Cell Rep Med
2022; 3(10):100783.
18. Zhang J, Li AM, Kansler ER, Li MO. Cancer immunity by tissue‐resident type 1 innate lymphoid cells and
killer innate‐like T cells. Immunol Rev 2024; 323(1):150-63.
19. Stein EM, Garcia-Manero G, Rizzieri DA, Tibes R, Berdeja JG, Savona MR, et al. The DOT1L inhibitor
pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood
2018;131(24):2661-9.
20. Kment J, Newsted D, Young S, Vermeulen MC, Laight BJ, Greer PA, et al. Blockade of TGF-β and PD-L1
by bintrafusp alfa promotes survival in preclinical ovarian cancer models by promoting T effector and NK
cell responses. Br J Cancer 2024; 130(12):2003-15.
21. Jiang T, Zhou C, Ren S. Role of IL-2 in cancer immunotherapy. Oncoimmunology 2016; 5(6):e1163462.
22. Oft M. IL-10: master switch from tumour-promoting inflammation to antitumour immunity. Cancer
Immunol Res 2014; 2(3):194-9.
23. Mocellin S, Panelli MC, Wang E, Nagorsen D, Marincola FM. The dual role of IL-10. Trends Immunol
2003; 24(1):36-43.
24. Ma S, Caligiuri MA, Yu J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer
immunotherapy. Trends Immunol 2022; 43(10):833-47.
25. Avanessian SC, van den Bijgaart RJ, Chew NW, Supper VM, Tang TT, Zhang Y, et al. IL2/IL15 Signaling
Induces NK Cell Production of FLT3LG, Augmenting anti–PD-1 Immunotherapy. Cancer Immunol Res
2025: OF1-7.